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Abstract—In this paper, a new mathematical programming
model and assignment algorithms are developed for minimizing
the schedule length in adaptive power and adaptive rate link
scheduling in spatial-TDMA wireless networks. The underlying
problem entails the optimal joint scheduling of transmissions
across multi-access communication links combined with the
simultaneous allocation of transmit power levels and data rates
across active links, while meeting required Signal-to-Interference-
plus-Noise Ratio (SINR) levels at intended receivers. We prove
that the problem can be modeled as a Mixed Integer-Linear
Programming (MILP) and show that the latter yields a solution
that consists of transmit power levels that are strongly Pareto Op-
timal. We note this problem to be NP-complete. For comparison
purposes, we employ the MILP formulation for computing the
optimal schedule for networks with small number of designated
links and limited number of data rate levels. We proceed to
develop and investigate a heuristic algorithm of polynomial
complexity for solving the problem in a computationally effective
manner. The algorithm is based on the construction of a Power
Controlled Rate adaptation Interference Graph. The desired
schedule is then derived by using a greedy algorithm to construct
an independence set from this graph. Based on system analyses,
we show, for smaller illustrative networks, the performance
behavior realized by the heuristic algorithms to generally be
in the 75 percentile of those attained by the optimal schedule.
We also show that performance of our heuristic algorithm is on
average 20% better than that attained under prior algorithms
that were developed for use under fixed transmit power and fixed
rate link scheduling.

Index Terms—Graph theory, combinatorial optimization,
medium access control, power control, rate adaptation.

I. INTRODUCTION

CONSIDER a wireless mesh network (Fig. 1) that consists
of interconnected wireless Local Area Networks (LANs),

a metropolitan area network and its backbone, and others
that employ meshed backbones and multi-hop access nets.
Assume that a scheduling based Medium Access Control
(MAC) protocol such as spatial-Time Division Multiple Ac-
cess (TDMA) is used. Time slots are allocated to stations
to transmit their messages across their established links. To
achieve high level of network throughput, it is desirable to
assign a schedule that will achieve a high level of spatial
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Fig. 1. A sample mesh network.

reuse (i.e. high number of simultaneous transmissions). To
enhance the efficiency of physical and MAC layer processes,
stations employ adaptable Software Defined Radios. Such
radio platform can be dynamically controlled to employ a
selected Modulation/Coding Scheme (MCS), so that it can
operate at a corresponding transmission data rate (R) within a
time slot. It is desirable at the same time, in conjunction with
the selection of the data rate level, to also adjust the level
of the station’s transmission power. In this paper, we study
the problem of link scheduling with power control and rate
adaptation in spatial-TDMA networks.

There have been many papers that study either the problem
of power control or the link scheduling in isolation, but
we have found no published papers that present effective
algorithms that solve the link scheduling problem jointly with
power control and rate adaptation.

Many publications have studied the power control prob-
lem in wireless networks. The power control problem for
maximizing the network throughput for a set of simultane-
ously active links, whereby the data rate across each link
is dictated by the chosen power level, has been modeled
as a convex optimization problem in [27]. In this study,
however, to make the feasible rate region a convex set, a
rate function of log(SINR) is used instead of log(1+SINR),
which assumes the SINR level is high at all the receivers.
Based on these assumptions, this study has proposed a gradient
projection algorithm to find the optimum power vector. A
simple distributed power control algorithm is presented in
[1], [19], [20]. Under this algorithm, the transmitting nodes
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of a set of simultaneously active links iteratively adjust their
transmission power levels by a factor that is equal to the ratio
of the target SINR to the measured SINR at their intended
receivers. In [29], the trade-offs involving the increase in the
level of spatial reuse and the ensuing decrease in the data
rates in a Carrier Sense Multiple Access/Collision Avoidance
(CSMA/CA) wireless mesh network is studied. The paper
shows that the network throughput is a function of the ratio
of the transmit power level to the carrier sensing threshold. It
proposes a decentralized method to adjust the transmit power
level of each node based on measured signal interference
levels. We note that the mechanisms mentioned above do not
consider the link scheduling problem, as well as do not address
the joint scheduling and rate adaptation problem.

Mechanisms for link scheduling at fixed power and fixed
rate have also been studied extensively. In considering such
a scheme in spatial-TDMA network, a heuristic algorithm
identified as ’GreedyPhysical’ has been proposed in [28]. The
algorithm orders links based on their pair-wise interference
values, and sequentially allocates to them available time-slots,
during which the scheduled transmissions are feasible. The
problem of scheduling active links at fixed power and fixed
data rate has also been modeled and solved as an edge coloring
problem in [31]. The authors introduce an efficient heuristic
algorithm for the edge coloring problem that achieves a shorter
schedule length compared to other edge-coloring algorithm. In
their method, interference is assumed when a receiving node is
in the transmission range of another node, but the aggregate
physical interference is neglected. In [30], scheduling of a
given traffic vector at fixed power and fixed rate in a wireless
mesh network is solved as an edge-coloring problem. By
mapping the given traffic vector into a weighted graph, the
chromatic index of the graph is used to determine if the
given traffic vector is feasible or not. An efficient coloring
algorithm is proposed, achieving a schedule length that is at
most twice the optimum length. The model, however, assumes
transmissions to be orthogonal to each other and no mutual
physical interference effects are considered. We note that the
algorithms mentioned above do not consider the problem of
link scheduling jointly with power control and rate adaptation.

Extensive research has been performed on the joint alloca-
tion of time slots and transmit power levels in a network when
a single transmission rate level is used across all the links [2]
- [8]. A power control algorithm to schedule a connected set of
links is proposed in [33]. The authors show that their algorithm
yields better performance compared to the uniform and linear
power assignment methods. Their algorithm schedules shorter
links in the same time slots and avoids assigning to the
same time-slot longer links that are too close to the intended
receivers of the scheduled links. However, their algorithm
does not take rate adaptation into account, and it assumes
that each link requires only a single time-slot. A multi-rate
link-scheduling problem has been studied in [9]; however, the
schemes used there do not engage in combined continuous
power control, data rate and disjoint time slot allocations.

In this paper, we study the problem of link scheduling
with adaptive power and adaptive rate. We first model the
problem as a mixed integer-linear program. We use this model
to calculate the optimum solution for a network involving a

small number of active links. We note the problem to be NP-
hard. Hence, we present a heuristic algorithm of polynomial
complexity to solve the problem efficiently. We show the per-
formance of our algorithm to be within 75% of the optimum
solutions attained for a set of illustrative small networks. We
also compare the performance of our algorithm with a known
fixed power and fixed rate scheduling algorithm, showing our
algorithm to yield an average of 20% improvement in network
throughput.

The system model is presented in Section II. In Section III,
we model the problem as a mixed integer linear program. We
present our heuristic algorithm in Section IV. In Section V, we
compare the performance of our heuristic algorithm with the
optimal solution and with an existing scheduling algorithm.
Conclusions are drawn in Section VI.

II. SYSTEM MODEL

We consider a wireless mesh network consisting of stations
that are stochastically active and wish to intercommunicate
in a prescribed region of operation. We assume a multiple
access channel that is shared among communicating users on
a TDMA basis. The channel is divided into a control sub-
channel, and a data sub-channel. A central controller is used
to allocate, time-slots to stations for the transmission of their
messages across the data sub-channel.

The control sub-channel is used by stations to inform the
controller about their activity (i.e. their need for time slots).
The controller also uses the control sub-channel to make
measurements of the characteristics of the communications
channels, deriving the propagation gain matrix. Often, use is
made of the measurement of power losses incurred by pilot
signals. The controller periodically updates these measure-
ments. It is assumed here that such updates are performed
sufficiently fast (taking into consideration channel coherence
time and user mobility speeds) to be of relevance for the
time period over which slot allocation is performed. It is
further assumed that the control channel overhead required
for updating the propagation gain matrix has been taken
into account, so that it is not an additional factor in the
underlying calculation of the schedule. The controller peri-
odically performs calculation for time slot allocation. The
length of this period is dynamically selected to ensure the
execution of new calculations when a distinct change has
taken place in the activity pattern (arrival/departure of mobile
stations), in the location of users, or in the characteristics of
the communications channel. The length of the calculation
period is selected to be less than the coherence time of the
channels; hence, in applying our mathematical model, the
communication channels and user activities are assumed to
remain unchanged during each calculation period.

During a calculation period, a set of nodes are identified
to be active, the loading level of each node is prescribed;
these network nodes are assumed to be at prescribed locations,
and propagation gain values are assumed to be fixed. Each
node is capable of adjusting its transmit power continuously
in a given range [0,P𝑚𝑎𝑥] and in a packet-by-packet fashion.
Every node, when scheduled to access the communication
channel, can transmit the packet at one of the data rates in
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the set 𝑅 = {𝑟1, 𝑟2, ⋅ ⋅ ⋅ , 𝑟𝑚} that is based on the use of m
available MCS; we set r1<r2<...<r𝑚. A single transmission is
intended for exactly one receiver. All nodes are equipped with
identical half-duplex radios and Omni-directional antennas.
We assume every transmission to occupy the entire bandwidth
of the system under consideration. Channel time is slotted
into identical synchronized time slots. Slot duration 𝜏𝑠 is
assumed to be equal to the transmission time of a packet under
the lowest rate r1 plus overhead. A node can successfully
receive from at most one other node in the same time slot.
We are concerned with the fixed assignment of transmissions
for the designated links in a frame. Thus, once the optimal
transmission patterns (i.e., the arrangement of transmissions
and the associated data rates and transmit power levels) are
determined, the frame is repeated in the time axis over the
given operational period.

A directed communication link l𝑖𝑗 can be established from
node i to node j if there exists a power 𝑃 ∈ [0, 𝑃max], under
which the Signal-to-Noise Ratio (SNR) at node j is not less
than the threshold corresponding to the lowest rate r1, i.e.
𝐺𝑖𝑗𝑃/𝑁 ≥ 𝛾(𝑟1). G𝑖𝑗 is the propagation gain representing
the effective power loss (incorporating link loss phenomena
such as fading and shadowing) incurred by direct transmission
from node i to node j, and N is the thermal noise power [10].
It has been commonly assumed that G𝑖𝑗 is equal to G𝑗𝑖 [1],
[11], [12], [13], [14]. The set of all designated communication
links that are used for transmission of at least one packet
(based on the upper layer routing considerations) is denoted
by L. N𝑇𝑥 represents a subset of nodes that are the transmitter
associated with at least one of the links in L. Similarly, N𝑅𝑥

denotes a subset of nodes that are the receiver associated with
at least one of the links in L. We use 𝐺 = [𝐺𝑖𝑗 ] to denote
the propagation gain matrix, representing the propagation gain
from each of the nodes in N𝑇𝑥 to each of the nodes in N𝑅𝑥.
We assume this matrix to be fixed during the underlying
operational period.

Let 𝑖
𝑟ℎ−→ 𝑗 and 𝑃 (𝑡)

𝑖𝑗 ∈ [0, 𝑃max], denote a direct trans-
mission over link l𝑖𝑗 under rate rℎ and the corresponding
transmit power level in time slot t, respectively. A transmission

scenario 𝑆(𝑡) = {𝑖1 𝑅(1)−−−→ 𝑗1, 𝑖2
𝑅(2)−−−→ 𝑗2, ⋅ ⋅ ⋅ , 𝑖𝑀 𝑅(𝑀)−−−−→

𝑗𝑀},𝑅(𝑘) ∈ 𝑅, 𝑘 = 1, 2, ⋅ ⋅ ⋅ ,𝑀, is defined as a candidate set
of transmissions that are considered to all take places at time
slot t, where all transmitting and receiving nodes are distinct
[15]. Fig. 2 shows a sample transmission scenario. Note that
the distinction of all transmitting and receiving nodes ensures
that the unicasting, half-duplexing, and receptivity constraints
are satisfied in every transmission scenario.

For transmission scenario S(t), under power vector 𝑃 (𝑡) =
(𝑃

(𝑡)
𝑖
1
𝑗
1
, ..., 𝑃

(𝑡)
𝑖
𝑀

𝑗
𝑀
), 0 ≤ 𝑃

(𝑡)
𝑖
𝑘
𝑗
𝑘
≤ 𝑃max,we define the trans-

mission from i𝑘 to be successful if the SINR at j𝑘 is not less
than the threshold 𝛾(𝑅(𝑘)):

𝐺𝑖
𝑘
𝑗
𝑘
𝑃

(𝑡)
𝑖
𝑘
𝑗
𝑘
− 𝛾(𝑅(𝑘))

𝑀∑
𝑧=1
𝑧 ∕=𝑘

𝐺𝑖𝑧 𝑗𝑘
𝑃

(𝑡)
𝑖𝑧𝑗𝑧

≥ 𝛾(𝑅(𝑘))𝑁 (1)

The value of the threshold 𝛾(𝑅(𝑘)) depends on the acceptable
Bit Error Rate (BER), MCS, and channel coding/decoding
algorithm [10]. We refer to such a model for successful

Fig. 2. A sample transmission scenario.

reception of a packet as the SINR-based Interference Model
[16]. The power vector 𝑃𝐴𝑃 (𝑡) = (𝑃

(𝐴𝑃,𝑡)
𝑖1 𝑗1

, ..., 𝑃
(𝐴𝑃,𝑡)
𝑖
𝑀

𝑗
𝑀

) that
satisfies system (1) of linear inequalities in equality form
is referred to as the apex solution of the system of linear
inequalities.

Definition 1. We define the power vector P(t) to be strongly
Pareto Optimal with respect to transmission scenario S(t), if
S(t) is a feasible transmission scenario under P(t), and any
other power vector P’(t) under which S(t) is feasible, would
require at least as much power (i.e. 𝑃 ′(𝑡) ≥ 𝑃 (𝑡) component-
wise).

Fact 1. Based on the Perron-Frobenious theorem [17]-[20],
it can be shown that if a transmission scenario S(t) is feasible,
the apex solution of the corresponding linear inequalities is
strongly Pareto Optimal with respect to S(t).

The number of packets per frame required to be transmitted
across the underlying links for the support of all the flows
is assigned by the upper layer operations and is determined
by the statistics of total offered load and the desired delay-
throughput performance metrics. The above-mentioned calcu-
lations translate the offered traffic load matrix to imply the
requirement of K𝑖𝑗 packets to be transmitted per frame across
link l𝑖𝑗 , for each link l𝑖𝑗 in L. Using rate adaptation and power
control in conjunction with link scheduling, our objective is
to design a timeframe with minimum schedule length that
provides for at least K𝑖𝑗 successful packet transmissions across
designated link l𝑖𝑗 , for every link 𝑙𝑖𝑗 ∈ 𝐿. Under the prescribed
optimum schedule, we aim to minimize the power level
employed by each of the transmitting nodes. We refer to this
problem as the Integrated Power controlled Rate adaptation
Scheduling (IPRS) problem.

III. MIXED INTEGER-LINEAR PROGRAMMING

FORMULATION

In this section, we develop and investigate a Mixed Integer
Linear Programming (MILP) formulation for the integrated
power controlled rate adaptation and scheduling problem. The
input for the optimization model is the set of designated
links (L), the traffic matrix, the associated propagation gain
matrix (G), maximum transmit power level (P𝑚𝑎𝑥), the set
of available data rates (R) and their corresponding minimum
required SINR levels(𝛾(𝑟𝑘), 𝑟𝑘 ∈ 𝑅). The decision variables
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in our mathematical modeling are𝑋(𝑡)
𝑖𝑗ℎ’s and𝑃 (𝑡)

𝑖𝑗 ’s.

𝑋
(𝑡)
𝑖𝑗ℎ =

⎧⎨
⎩
1 if at least one packet is transmitted

in time slot t over link 𝑙𝑖𝑗 at rate 𝑟ℎ,

0 otherwise.

𝑃
(𝑡)
𝑖𝑗 ∈ [0, 𝑃max]

Every solution of the IPRS can be represented as (X,P). The
set of quadratic constraint:

𝐺𝑖𝑗𝑃
(𝑡)
𝑖𝑗 −𝛾(𝑟ℎ)(

𝑚∑
𝑞=1

∑
(𝑓,𝑠)

𝐺𝑓𝑗𝑃
(𝑡)
𝑓𝑠 𝑋

(𝑡)
𝑓𝑠𝑞−𝑁) ≥ Φ ⋅ (𝑋(𝑡)

𝑖𝑗ℎ−1)

(2)
where Φ is a sufficiently large positive number, imposes the
SINR requirement for a transmission over link l𝑖𝑗 at time slot
t. Note that if no transmission is scheduled to take place over
link l𝑖𝑗 at time slot t(𝑋(𝑡)

𝑖𝑗ℎ = 0), the associated constraint
becomes redundant.

We next prove that the IPRS problem can be modeled as
the following MILP formulation:

Minimize Z(X,P) =
𝑇max∑
𝑡=1

∑
(𝑖,𝑗)∈𝐿

(𝑐𝑡

𝑚∑
ℎ=1

𝑋
(𝑡)
𝑖𝑗ℎ + 𝜖𝑃

(𝑡)
𝑖𝑗 ) (3)

𝑠.𝑡.

𝑇max∑
𝑡=1

𝑚∑
ℎ=1

(
𝑟ℎ
𝑟1

)𝑋
(𝑡)
𝑖𝑗ℎ ≥ 𝐾𝑖𝑗 (4)

𝑚∑
ℎ=1

(
∑

(𝑖,𝑗)∈𝐿

𝑋
(𝑡)
𝑖𝑗ℎ +

∑
(𝑗,𝑓)∈𝐿

𝑋
(𝑡)
𝑗𝑓ℎ) ≤ 1, 𝑗 ∈ 𝑁𝑇𝑥

∪
𝑁𝑅𝑥 (5)

𝐺𝑖𝑗𝑃
(𝑡)
𝑖𝑗 − 𝛾(𝑟ℎ)

∑
(𝑓,𝑠)

𝐺𝑓𝑗𝑃
(𝑡)
𝑓𝑠 − 𝛾(𝑟ℎ)𝑁 ≥ Φ(𝑋

(𝑡)
𝑖𝑗ℎ − 1) (6)

0 ≤ 𝑃
(𝑡)
𝑖𝑗 ≤ 𝑃max (7)

𝑋
(𝑡)
𝑖𝑗ℎ = 0, 1, (𝑖, 𝑗) ∈ 𝐿, ℎ = 1, ⋅ ⋅ ⋅ ,𝑚, 𝑡 = 1, ⋅ ⋅ ⋅ , 𝑇max (8)

In Eq. (3), 𝜖 is a sufficiently small positive number, and c𝑡 is
a positive constants defined as

𝑐𝑡 = 𝑡.∣𝐿∣.𝑐𝑡−1, 𝑡 = 2, ..., 𝑇max, 𝑐1 = 1 (9)

It can be seen that the constraints expressed by Eq. (5)
guarantee that node j is either the transmitter or the receiver of
at most one of the transmissions scheduled for time slot t. This
feature simultaneously imposes the unicasting, half-duplexing,
and receptivity constraints at every time slot t. Moreover, it
ensures that all transmissions over link l𝑖𝑗 (and link l𝑗𝑓 ) in
time slot t are performed under the same rate rℎ. Note that the
quadratic constraint expressed by Eq. (2) has changed into the
linear constraint of Eq. (6) by excluding the 𝑋(𝑡)

𝑓𝑠𝑞 variables.
The use of Eq. (3) to define the objective function is performed
for pure mathematical convenience. The role of the coefficients
c𝑡 used in defining the objective function is to ensure that the
length of the schedule corresponding to the optimal solution of
the MILP formulation is minimum. The role of the coefficient
𝜖 in the objective function is twofold: first, the positivity
of 𝜖 ensures the strongly Pareto optimality of the optimal
transmit power levels deduced from the optimum solution of
the MILP formulation. Second, the fact that 𝜖 is assumed to

be a sufficiently small (positive) number guarantees that the
addition of the power related terms to the objective function
does not interfere with the role of the coefficient 𝜖 in inducing
the minimization of the frame length.

Lemma 1. Every solution of the MILP formulation yields
a feasible transmission scenario at each time slot.

Proof. Consider an arbitrary time slot t under a solution (X,
P) of the MILP formulation. Eq. (5) guarantees that all the
transmitting and receiving nodes in the time slot t are distinct,
i.e. 𝑆(𝑡) = {𝑖 𝑟ℎ−→ 𝑗∣𝑋(𝑡)

𝑖𝑗ℎ = 1} forms a transmission scenario.

Assume 𝑆(𝑡) = {𝑖1 𝑅(1)−−−→ 𝑗1, 𝑖2
𝑅(2)−−−→ 𝑗2, ⋅ ⋅ ⋅ , 𝑖𝑀 𝑅(𝑀)−−−−→

𝑗𝑀}. Now, we claim that transmission scenario S(t) under
power vector 𝑃 (𝑡) = (𝑃

(𝑡)
𝑖
1
𝑗
1
, 𝑃

(𝑡)
𝑖
2
𝑗
2
, ..., 𝑃

(𝑡)
𝑖
𝑀

𝑗
𝑀
) is feasible:

Consider an arbitrary transmission 𝑖𝑘
𝑅(𝑘)−−−→ 𝑗𝑘 in S(t).

Since𝑋(𝑡)
𝑖
𝑘
𝑗
𝑘
𝑅(𝑘) = 1, based on Eq. (6) we have:

𝐺𝑖
𝑘
𝑗
𝑘
𝑃

(𝑡)
𝑖
𝑘
𝑗
𝑘
−𝛾(𝑅(𝑘))(

∑
(𝑓,𝑠) ∕=(𝑖𝑘,𝑗𝑘)

𝐺𝑓𝑗
𝑘
𝑃

(𝑡)
𝑓𝑠 −𝑁) ≥ 0 (10)

𝑋(𝑡) ⊆ 𝐿→
∑

(𝑓,𝑠)∈
𝐿−(𝑖𝑘,𝑗𝑘)

𝐺𝑓𝑗
𝑘
𝑃

(𝑡)
𝑓𝑠 ≥

∑
(𝑓,𝑠)∈

𝑋(𝑡)−(𝑖𝑘,𝑗𝑘)

𝐺𝑓𝑗
𝑘
𝑃

(𝑡)
𝑓𝑠

=

𝑀∑
𝑧=1
𝑧 ∕=𝑘

𝐺𝑖𝑧 𝑗𝑘
𝑃

(𝑡)
𝑖𝑧 𝑗𝑧

(11)

𝐺𝑖
𝑘
𝑗
𝑘
𝑃

(𝑡)
𝑖
𝑘
𝑗
𝑘
− 𝛾(𝑅(𝑘))

𝑀∑
𝑧=1
𝑧 ∕=𝑘

𝐺𝑖𝑧 𝑗𝑘
𝑃

(𝑡)
𝑖𝑧 𝑗𝑧

≥ 𝛾(𝑅(𝑘))𝑁 (12)

which along with Eq. (7) indicates that the arbitrary transmis-

sion 𝑖𝑘
𝑅(𝑘)−−−→ 𝑗𝑘 of the transmission scenario S(t) under power

vector P(t) is successful. Consequently, transmission scenario
S(t) is feasible under power vector P(t). QED

Theorem 1. Every optimum solution of the MILP formula-
tion yields a strongly Pareto optimal power vector with respect
to the underlying transmission scenario at each time slot.

Proof. Consider an arbitrary time slot t under an op-
timum solution (X*,P*) of the MILP formulation, 𝑋∗ =
{𝑋∗(𝑡)

𝑖𝑗ℎ , (𝑖, 𝑗) ∈ 𝐿, ℎ = 1, 2, ⋅ ⋅ ⋅ ,𝑚, 𝑡 = 1, 2, ⋅ ⋅ ⋅ , 𝑇max},
𝑃 ∗ = {𝑃 ∗(𝑡)

𝑖𝑗 , (𝑖, 𝑗) ∈ 𝐿, 𝑡 = 1, 2, ⋅ ⋅ ⋅ , 𝑇max}. Based on
Lemma 1, the set of transmissions at time slot t forms

a transmission scenario 𝑆∗(𝑡) = {𝑖1 𝑅(1)−−−→ 𝑗1, 𝑖2
𝑅(2)−−−→

𝑗2, ⋅ ⋅ ⋅ , 𝑖𝑀 𝑅(𝑀)−−−−→ 𝑗𝑀}, which is feasible under power vector
𝑃 ∗(𝑡) = (𝑃

∗(𝑡)
𝑖
1
𝑗
1
, 𝑃

∗(𝑡)
𝑖
2
𝑗
2
, ..., 𝑃

∗(𝑡)
𝑖
𝑀

𝑗
𝑀
). To prove that the power

vector P*(t) is strongly Pareto Optimal with respect to trans-
mission scenario S*(t), based on Fact 1, it is sufficient to show
that 𝑃 ∗(𝑡) = 𝑃𝐴𝑃 (𝑡) component-wise. Since cardinality of
S*(t) is M, only M of the constraints associated with the time
slot t in Eq. (6) are non-redundant. These active constraints can
be written as the following system of MxM linear inequalities:

𝐺𝑖
𝑘
𝑗
𝑘
𝑃

∗(𝑡)
𝑖
𝑘
𝑗
𝑘
− 𝛾(𝑅(𝑘))

𝑀∑
𝑧=1
𝑧 ∕=𝑘

𝐺𝑖𝑧 𝑗𝑘
𝑃

∗(𝑡)
𝑖𝑧 𝑗𝑧

≥ 𝛾(𝑅(𝑘))𝑁 (13)

System (13) has a nonnegative solution P*(t), based on Fact
1, 𝑃 ∗(𝑡) ≥ 𝑃𝐴𝑃 (𝑡) (component-wise). In turn, based on the
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optimality of P*(t) we have 𝑃𝐴𝑃 (𝑡) ≥ 𝑃 ∗(𝑡). Therefore,
we conclude that𝑃 ∗(𝑡) = 𝑃 (𝐴𝑃 )(𝑡). Hence, we conclude that
P*(t) is strongly Pareto optimal with respect to transmission
scenario S*(t). It is noted that under the optimum solution of
the MILP formulation, the total power consumption of each of
the nodes are minimized over the set of all admissible power
allocations for the prescribed optimum schedule. QED

Theorem 2. Every optimum solution of the MILP formula-
tion is an optimum solution of the IPRS problem.

Proof. Let (X’,P’) and T’ represent an optimum solution of
the IPRS problem and the associated minimum frame length
(in terms of number of time slots) respectively. We have:

𝑍(𝑋 ′, 𝑃 ′) =
𝑇 ′∑
𝑡=1

∑
(𝑖,𝑗)∈𝐿

(𝑐𝑡

𝑚∑
ℎ=1

𝑋
′(𝑡)
𝑖𝑗ℎ + 𝜖𝑃

′(𝑡)
𝑖𝑗 )

≤
𝑇 ′∑
𝑡=1

(𝑐𝑡∣𝐿∣+ 𝜖
∑

(𝑖,𝑗)∈𝐿

𝑃
′(𝑡)
𝑖𝑗 )

≤ 𝑐𝑇 ′ ∣𝐿∣𝑇 ′ + 𝜖
𝑇 ′∑
𝑡=1

∑
(𝑖,𝑗)∈𝐿

𝑃
′(𝑡)
𝑖𝑗

(14)

where inequality (14) is deduced by the fact that there cannot
be more than ∣L∣ simultaneous transmissions in every time
slot. Since 𝜖 is a sufficiently small number, we have:

𝜖

𝑇 ′∑
𝑡=1

∑
(𝑖,𝑗)∈𝐿

𝑃
′(𝑡)
𝑖𝑗 ≤ 𝑐𝑇 ′ ∣𝐿∣ 1 (15)

By considering relations (9), (14), and (15), we conclude

𝑍(𝑋 ′, 𝑃 ′) ≤ 𝑐𝑇 ′+1. (16)

Now, suppose there is an optimum solution of the MILP
formulation (X*,P*) that yields a frame length of T* slots,
where T* > T’. We have:

𝑍(𝑋∗, 𝑃 ∗) =
𝑇∗∑
𝑡=1

∑
(𝑖,𝑗)∈𝐿

(𝑐𝑡

𝑚∑
ℎ=1

𝑋
∗(𝑡)
𝑖𝑗ℎ + 𝜀𝑃

∗(𝑡)
𝑖𝑗 )

≥
𝑇 ′∑
𝑡=1

∑
(𝑖,𝑗)∈𝐿

(𝑐𝑡

𝑚∑
ℎ=1

𝑋
∗(𝑡)
𝑖𝑗ℎ + 𝜀𝑃

∗(𝑡)
𝑖𝑗 ) + 𝑐𝑇 ′+1 (17)

Considering relations (16) and (17), we have

𝑍(𝑋 ′, 𝑃 ′) < 𝑍(𝑋∗, 𝑃 ∗). (18)

which contradicts the optimality of (X*,P*) for the MILP
formulation. Therefore, T* cannot be strictly greater than T’.
Consequently, we conclude that every optimum solution of
the MILP formulation is an optimum solution of the IPRS
problem. QED

The edge-coloring problem is known to be NP-complete
[21]. The IPRS problem presented above can be reduced
to an edge coloring problem to show that it is NP-hard.
To show this equivalence, we must go through considerable
simplification of the original problem. Such modifications
include assumptions that all the links operate at a fixed rate,
ignoring aggregate physical interference effects, and assuming

1For instance 𝜖 can be any positive number less than [∣𝐿∣2𝑃max]
−1

that each link only requires a single time-slot. The use of
known bounds for heuristic edge-coloring algorithms (e.g.,
the square of the maximum nodal degree [32]) is therefore
too loose in providing an effective measure of computational
complexity. We thus conclude the need for a heuristic algo-
rithm to provide an acceptable solution to the IPRS problem in
a computationally efficient manner for networks with a large
number of active links to be scheduled.

IV. HEURISTIC ALGORITHM FOR THE ADAPTIVE RATE,
POWER AND SLOT ASSIGNMENT PROBLEM

A. The Power Controlled Rate Adaptation Interference Graph

In this section, we introduce the notion of the Power Con-
trolled Rate Adaptation (PCRA) Interference Graph, which is
used as the basic building block of the heuristic algorithm that
we present in the subsequent section. We use the following
result to derive a simple mathematical formalism for the
construction of the links of the interference graph:

Transmission scenario 𝑆(𝑡) = {𝑖1 𝑅(1)−−−→ 𝑗1, 𝑖2
𝑅(2)−−−→ 𝑗2} is

feasible if and only if the components of the apex solution of
the following linear inequalities are in the range [0, P𝑚𝑎𝑥]:{

𝐺𝑖
1
𝑗
1
𝑃

(𝑡)
𝑖
1
𝑗
1
− 𝛾(𝑅(1))𝐺𝑖

2
𝑗
1
𝑃

(𝑡)
𝑖
2
𝑗
2
≥ 𝛾(𝑅(1))𝑁

−𝛾(𝑅(2))𝐺𝑖
1
𝑗
2
𝑃

(𝑡)
𝑖
1
𝑗
1
+𝐺𝑖

2
𝑗
2
𝑃

(𝑡)
𝑖
2
𝑗
2
≥ 𝛾(𝑅(2))𝑁

(19)

The PCRA Interference Graph is defined as an undirected
weighted graph G(V,E,w), in which V and E are the set of
vertices and set of edges of graph G, respectively, and w is
a nodal weight function, 𝑤 : 𝑉 → 𝑅+, where R+ is the set
of positive real numbers. Every vertex in V is represented by
an ordered triplet(𝑖, 𝑗, 𝑟ℎ), considering only active links l𝑖𝑗 in
L and rates that are not excessively high with respect to the
residual load K𝑖𝑗 . Thus, the set of vertices is presented as: 𝑉 =
{𝑣𝑖𝑗 , 𝑙𝑖𝑗 ∈ 𝐿}, 𝑣𝑖𝑗 = {𝑣𝑖𝑗ℎ = (𝑖, 𝑗, 𝑟ℎ), ℎ = 1, 2, ⋅ ⋅ ⋅ ,𝑚𝑖𝑗

′}.
The parameter 𝑚𝑖𝑗

′ represents the index of the highest rate
considered for active link l𝑖𝑗 . We thus have:

𝑚𝑖𝑗
′ =

⎧⎨
⎩
𝑚 𝑘𝑖𝑗 > 𝑟𝑚/𝑟1, 𝐺𝑖𝑗𝑃max/𝑁 ≥ 𝛾(𝑟𝑚)

ℎ+ 1 𝑟ℎ < 𝑟1𝐾𝑖𝑗 ≤ 𝑟ℎ+1, 𝐺𝑖𝑗𝑃max/𝑁 ≥ 𝛾(𝑟ℎ+1)

0 otherwise
(20)

The weight of each vertex (𝑖, 𝑗, 𝑟ℎ)in the interference graph
is set to 𝑟ℎ/𝑟1, which is the number of packets that can be
transmitted over link l𝑖𝑗 in a single time slot operating at rate
rℎ.

Vertices (𝑖1, 𝑗1, 𝑅(1)) and (𝑖2, 𝑗2, 𝑅(2)) are connected to
each other by an edge in the interference graph G if and
only if nodes i1, j1, i2, and j2 are not mutually distinct, or

transmission scenario 𝑆(𝑡) = {𝑖1 𝑅(1)−−−→ 𝑗1, 𝑖2
𝑅(2)−−−→ 𝑗2} is not

feasible (does not satisfy constraint (19)). Consequently, every
edge in the PCRA Interference Graph has the property that
successful simultaneous transmissions of the network links
represented by the end nodes of this interference graph edge
at the prescribed data rates under any power allocation is
impossible.

The weight of a nodal subset 𝑆, 𝑆 ⊆ 𝑉, in a graph G is
defines as𝑊 (𝑆) =

∑
𝑢∈𝑆 𝑤(𝑢). A weighted independent set I

of G is defined to be maximum if there is no other independent
set I’ of G such that 𝑊 (𝐼 ′) > 𝑊 (𝐼). Moreover, a weighted
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independent set I of G is said to be maximal if for every
vertex 𝑢, 𝑢 ∈ (𝑉 − 𝐼),𝐼 ∪𝑢is not independent anymore [22].
We define a maximal weighted independent set of the PCRA
Interference Graph to be super-maximal if an increase of the
rate across any single link will make the set non-independent.

Theorem 3. Let 𝑀𝑊𝐼𝑆 =
{(𝑖1, 𝑗1, 𝑅(1)), ⋅ ⋅ ⋅ , (𝑖𝑀 , 𝑗𝑀 , 𝑅(𝑀))} denote a maximal
weighted independent set of the PCRA Interference Graph.

Then, 𝑆(𝑡) = {𝑖1 𝑅(1)−−−→ 𝑗1, ⋅ ⋅ ⋅ , 𝑖𝑀 𝑅(𝑀)−−−−→ 𝑗𝑀} is a
transmission scenario that it is not a proper subset of any
feasible transmission scenario.

Proof. First, we note that all the nodes 𝑖1, 𝑗1, ⋅ ⋅ ⋅ , 𝑖𝑀 , 𝑗𝑀
are mutually distinct. Now, assume that 𝑆′(𝑡) = {𝑖1 𝑅(1)−−−→
𝑗1, ⋅ ⋅ ⋅ , 𝑖𝑀+Δ

𝑅(𝑀+Δ)−−−−−−→ 𝑗𝑀+Δ} is a feasible trans-
mission scenario. By definition of a feasible transmis-
sion scenario, then there exists a power vector 𝑃 ′(𝑡) =

(𝑃
′(𝑡)
𝑖
1
𝑗
1
, ⋅ ⋅ ⋅ , 𝑃 ′(𝑡)

𝑖𝑀+Δ𝑗𝑀+Δ
), under which simultaneous trans-

mission of every transmissions in S’(t) at the pre-
scribed data rates is successful. Consequently, the set
{(𝑖1, 𝑗1, 𝑅(1)), ⋅ ⋅ ⋅ , (𝑖𝑀+Δ, 𝑗𝑀+Δ, 𝑅(𝑀 + Δ))} is also a
weighted independent set of the PCRA Interference Graph.
But, the latter contradicts the maximality of the weighted inde-
pendent set 𝑀𝑊𝐼𝑆 = {(𝑖1, 𝑗1, 𝑅(1)), ⋅ ⋅ ⋅ , (𝑖𝑀 , 𝑗𝑀 , 𝑅(𝑀))}
which completes the proof. QED

B. Integrated Power Controlled Rate adaptation Scheduling
Algorithm

We have noted that the derivation of an algorithm that
achieves an optimal solution of the IPRS problem for net-
works with large number of designated links in a reasonable
time is an NP-hard problem. This motivates the need for a
computationally efficient heuristic algorithm that provides an
acceptable solution to any instance of the problem in poly-
nomial time. Based on the notion of the PCRA Interference
Graph, we introduce in this section a novel heuristic algorithm
that solves the IPRS problem in a polynomial efficient manner.

An efficient greedy heuristic algorithm, identified as
GWMIN, has been developed for solving the Maximum
Weighted Independent Set problem [23]. At each iteration
of the GWMIN algorithm, one vertex is selected from the
residual graph for inclusion into the weighted independent set;
then, the selected vertex and all its neighbors are removed
from the graph. This process is repeated until the set of
vertices V(G𝑖) of the residual graph G𝑖 at the i-th iteration
is null. In selecting a vertex in each step, vertex v is selected
if:

𝑤(𝑣)/(𝑑𝐺𝑖(𝑣)+1) = max
𝑢∈𝑉 (𝐺𝑖)

{𝑤(𝑢)/(𝑑𝐺𝑖(𝑢)+1)}, (21)

It is noted that the nodal selection process takes into account
the weight of a node, which represents the underlying rate. In
the interference graph, the nodal degree is indicative of the
level of interference imposed by a transmission conducted
along this link on other links. Based on using the greedy
algorithm in the interference graph we define the following
algorithm:

The Integrated Power Controlled Rate adaptation
Scheduling (IPRS) Algorithm:

1) Generate the PCRA Interference Graph.
2) Using the GWMIN algorithm, obtain a maximal

weighted independent set of the PCRA Interfer-
ence Graph.

3) Check feasibility of the selected set in step 2
and remove links until it becomes feasible.

4) Try to add links to make the selected set super-
maximal.

5) Update the load and go to step 1 if there is
residual load.

The set selected at the completion of Step 2, say S(1), has
the property that it satisfies the half-duplexing, unicasting,
and receptivity constraints. Furthermore, based on Theorem 3,
transmission scenario S(1) is not a proper subset of any fea-
sible transmission scenario. Moreover, based on the definition
of the PCRA Interference Graph, every subset of S(1) with
cardinality equal to two is a feasible transmission scenario,
which, in turn, implies that there is a good chance that S(1) (or
a large subset of S(1)) is also a feasible transmission scenario.
The IPRSA algorithm utilizes transmission scenario S(1) as
a suitable initial point for its search for a super-maximal
feasible transmission scenario for allocation to time slot 1.
This search consists of two consecutive steps (i.e., Feasibility
and Super-Maximality). After these two steps, the resulting
super-maximal feasible transmission scenario S’(1) is allocated
to the first time slot.

After scheduling the first time slot, the values of 𝐾𝑖′𝑘𝑗′𝑘
are updated and subsequently the PCRA Interference Graph
is trimmed. The algorithm then iterates the same procedure for
the next time slot. IPRSA terminates when the residual PCRA
Interference Graph becomes a trivial graph or equivalently
when 𝐾𝑖𝑗 = 0 for all the communication links l𝑖𝑗 in L.

In the following, we explain the Feasibility and Super-
Maximality stages in more detail.

Feasibility Stage. The Feasibility Stage aims to find a
maximum feasible transmission scenario over all the subsets
of transmission scenario 𝑆(𝑡) = {𝑖1 𝑅(1)−−−→ 𝑗1, ⋅ ⋅ ⋅ , 𝑖𝑀 𝑅(𝑀)−−−−→
𝑗𝑀}. This problem is known to be an NP-complete problem
[24]. We modify the Stepwise Maximum Interference Removal
Algorithm (SMIRA) that was originally introduced for the
downlink connection removal of the cellular radio systems
[25] to be used in a network where nodes are transmitting
at different rate. In the SMIRA algorithm, at every step a
transmission is removed from the group of potential trans-
missions, which on average causes most interference to other
receivers (i.e., the non-intended receivers) or is most sensitive
to interference from other transmissions. SMIRA iterates this
process until the resulting transmission scenario is feasible.

Super-Maximality Stage. The feasible transmission sce-
nario FS induced by the Feasibility Stage is not necessarily
maximal with respect to the underlying residual PCRA Inter-
ference Graph. To ensure that the set of transmissions allocated
to every time slot forms a maximal feasible transmission
scenario, the Super-Maximality stage iteratively considers the
other remaining transmissions for possible inclusion in the
transmission scenario FS. Also, the Super-Maximality stage



2368 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 9, NO. 7, JULY 2010

iteratively assigns the maximum possible rate to each transmis-
sion in the resulting maximal feasible transmission scenario
to ensure that the resulting feasible transmission scenario is
super-maximal.

Theorem 4. The computational complexity of the IPRS
Algorithm is 𝑂(𝑚2𝛼3∣𝐿∣2).

Proof. The number of available data rates is equal to
m, the size of the maximum independent set of the PCRA
Interference Graph is set equal to 𝛼, and ∣L∣ is the number of
links to be scheduled. Note that 𝛼 is typically much smaller
than ∣L∣. The selection of a maximal independent set from
the PCRA Interference Graph (using GWMIN) requires an
order of 𝑚2∣𝐿∣2 computations. To check the feasibility of an
independent set, the algorithm has to solve a system of linear
inequalities with a size of at most 𝛼x𝛼, which requires an
order of 𝛼3 computations. The super-maximality stage checks
for feasibility and maximality as it considers links for possible
inclusion into the feasible transmission scenario. Hence, it
requires an order of at most 𝑚2𝛼3∣𝐿∣2 computations. We note
that the complexity of the algorithm is dominated by the super-
maximality stage. QED

The complexity of the heuristic algorithm scales in a manner
that is proportional to the square of the number of links in the
network, so it is able to perform the scheduling rapidly even
for a network with a large number of active links. Hence,
our approach is effective as long as the coherence time of
the channel (based on the rate of channel quality fluctuations
and user mobility) is longer than the computation time of our
heuristic algorithm.

V. NUMERICAL ILLUSTRATIONS

We have compared the performance of our IPRS algorithm
with the optimal solution by running extensive computer
simulations. We have also compared the performance of our
IPRS algorithm with that of a scheduling algorithm identified
as ’Greedy Physical’, which was presented in [28]. The
latter algorithm was developed for spatial-TDMA network,
where nodes transmit at a fixed power and a fixed rate. We
uniformly distribute 500 nodes in a square area of dimensions
5000m x 5000m. Each node can select for the transmission
across each link, one out of three transmission rates {r1 =
1Mbps, r2 = 2Mbps, r3 = 5.5Mbps}. At rate r𝑘, a node
can transmit 2𝑘 packets in a time-slot. We have used the
rates and the corresponding SINR thresholds according to the
802.11b standard [34]. Each node can adjust its transmit power
continuously in the range [0,P𝑚𝑎𝑥], where P𝑚𝑎𝑥 is set to be
100 mW. The propagation gain is modeled as 𝐺𝑖𝑗 = 1/𝑑𝑖𝑗

2.5

where 𝑑𝑖𝑗 is the distance between the transmitter and receiver.
The complexity of the optimum solution obtained through

the MILP model grows exponentially with the number of
active links. Hence, to compare the performance of the
heuristic algorithms with that of the optimum solution, we
had to pick a small number of active links. We examined
6 different scenarios. Scenarios are differentiated by using
distinct noise power levels. The selected noise power level
affects the maximum length of a realizable link (a link that
satisfy the lowest SINR threshold at its receivers, when the
transmit power is P𝑚𝑎𝑥). A higher noise power level results in
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Fig. 3. Throughput of 6 different network scenarios with 15 links.

the selection of shorter links, which in turn leads to a higher
spatial reuse factor. For each scenario, the underlying noise
power level is fixed. We, however, proceed for each scenario
to examine different sets of active links by selecting 15 links at
random from the set of realizable links. For each scenario, the
demand is for 20 packets to be transmitted across each one of
the selected links. Considering 6 different scenarios, we show
in Fig. 3 the network throughput attained under the use of the
optimum method, the IPRS algorithm, and the GreedyPhysical
algorithm. For each scenario, each data point is the average
throughput obtained from 10 simulation runs. As it can be
seen from Fig. 3 the throughput under the IPRS algorithm is
(on average) 20% better than that attained by the use of the
GreedyPhysical algorithm which assumes a fixed data rate (𝑟1)
and fixed power (P𝑚𝑎𝑥). Noticeable performance improvement
is realized as the network offers higher spatial reuse levels. The
throughputs attained under the IPRS algorithm are noted to be
within 75% of the optimum throughput values for the set of
illustrated scenarios. Of course, the computational complexity
of the optimal scheme becomes prohibitively high as the num-
ber of links and rates increases to even a moderate level. For
the illustrated scenarios, using a 1 GHz PC computer, typical
calculation time required by the optimum MILP method to
assign data rate and power values in a time-slot was about 25
sec while the required time by the heuristic IPRS algorithm
was about 6 msec.

To test the performance of our heuristic IPRS algorithm in
networks that involve a larger number of active links, we ran
another set of simulations under which we have compared the
performance of our IPRS algorithm with that of the Greedy-
Physical algorithm. Considering a network of 500 nodes, we
randomly select a specified number of links (L). We display
the attained network throughput versus L, under the use of the
IPRS algorithm and the GreedyPhysical algorithm. We have
studied the performance of these algorithms by examining
three different sets of active links. Under the first set, each
selected link must be able to transmit at a minimum rate 𝑟1.
Under the second and third sets, each selected link must be
able to transmit at a minimum rate 𝑟2 and 𝑟3, respectively.
Under the GreedyPhysical algorithm, when the k-th set of
active links is used, the fixed transmit rate at each node is
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Fig. 4. Throughput versus number of links.

20 40 60 80 100
5

5.5

6

6.5

7

7.5

8

Number fo links

T
hr

ou
gh

pu
t  

(l
in

ks
/ti

m
e−

sl
ot

)

 

 

IPRS
GreedyPhysical (r2)

Fig. 5. Throughput versus number of links.
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Fig. 6. Throughput versus number of links.

set equal to 𝑟𝑘 . Figs. 4,5, and 6 show the network throughput
vs. the number of active links (L) under the IPRS algorithm
and under the GreedyPhysical algorithm, whereby nodes under
the latter algorithm use fixed power P𝑚𝑎𝑥 and fixed rate 𝑟1, 𝑟2
and 𝑟3, respectively. Note that each data point corresponds to
a random placement of the nodes and a random selection of L
links among these nodes. Consequently, network throughput
levels are expected to fluctuate from case to case as the L
level changes. We observe that for each case, the network

throughput attained under the IPRS algorithm is on average
20% higher than that attained under the fixed power and fixed
rate GreedyPhysical algorithm.

VI. CONCLUSION

Many wireless networks that serve telecommunications in-
frastructures employ TDMA based medium access control
protocols. Due to the variable and stochastic nature of traffic
processes and interference patterns, the channel quality of
communication links tends to fluctuate. The introduction of
Software Defined Radios, coupled with the use of intelligent
cross-layer scheduling mechanisms can go a long way towards
improving the network throughput. In this paper, we develop
models and algorithms that are used for the implementation
of efficient spatial-TDMA based adaptive power and adaptive
rate cross-layer scheduling schemes.

We model this optimum cross-layer scheduling problem as
a Mixed Integer Linear Program (MILP) and show that it can
be solved for a system that involves a small number of links
and data rate levels. We note the optimum method to be NP
hard. Hence, we proceed to develop and present a heuristic al-
gorithm for solving the problem. Under our heuristic method,
we derive a feasible super-maximal independent set in the
PCRA Interference Graph.

We have carried out performance analyses for a wide
multitude of networking scenarios. By considering networks
that involve smaller set of active links, our simulation results
demonstrate the performance of our heuristic method to be
in the 75 percentile of the optimum solution for the investi-
gated networking scenarios. When considering networks that
involve larger set of active links, we have shown our heuristic
algorithm to yield a throughput that is (on the average) 20%
higher than that attained by a fixed rate and fixed power link
scheduling algorithm. Future extensions of this work include
the derivation and study of distributed methods for allocation
of time-slot, power level, and data rate levels, as well as the
incorporation of such adaptations that are performed jointly
with the selection of end-to-end routes.
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